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Abstract 

On the basis of several earlier papers and in view of the current availability of logic- 
programming facilities, the authors propose a list-processing approach to the modelling 
of algebraic quantum field theory methods in which the noncommutative algebra of 
quantum-mechanical operators is emulated by lists. The processing produces reordered 
sequences of elements of a ring with a unit commutator and generates dynamic structures 
which for some initial arrangements correspond to partially ordered graphs characterized 
by recurrence relations and combinatorial identities. The approach is illustrated by 
reviewing the simple case of a forced harmonic oscillator. The programming aspects are 
briefly described. 

1. Introduction 

Some years ago, in a paper entitled "Transition probability of a linearly forced 
harmonic oscillator system" [1], a binomial expansion for non-commuting operators 
was used, in a time-dependent perturbation calculation in the interaction representation, 
to expand the evolution operator and obtain the transition probabilities expressed in 
terms of the generalized Laguerre polynomials. The standard S-matrix calculation was 
closely followed, except that it was possible to bypass the T ordering and the Wick 
theorem. The calculation hinged on the application of several algebraic expansion 
theorems, in the ring generated by two elements with unit commutator, established 
by the same authors in one of their earlier papers [2]. 

The aim of the present work is to closely reexamine the algebraic features of 
these expansion theorems and to attempt to formulate a list-processing approach for 
calculating various quantum-mechanical queries by computer-implemented logic 
programming of dynamic lists. It turns out that the implied list-processing corresponds 
to generating partially ordered graphs from the appropriate initial binary-tree structures, 
which in some situtations, possessing a certain measure of symmetry of form, leads 
to recurrence relations and integer-valued coefficients related to combinatorial identities 
and special functions. 

2. Algebraic reorder ing methods 

Let R denote an associative ring with unit 1 of characteristic zero. For any two 
elements A, B E R obeying the commutation relation 
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[A, B] = l, (1) 

each of the following two sequences 

l ,  BA ,  (BA) 2, (BA) 3 . . . . .  (BA)n ' " i ] I  

l ,  BA,  B2A 2, B3A 3 . . . .  BnAn, . .  (2) 

is linearly independent  over the ring of  integers [2]. 
With respect to prospective quantum-mechanical  applications, in which the 

ring would be implemented as an algebra of  operators over the vector space of  
physical states (with B and A in the role of  creation and annihilation operators, 
respectively [3]), the elements of the first sequence (BA) n would have the basis 
vectors I k) as eigenvectors, while the elements of  the second sequence BnA n, appearing 
as members  in the calculation of  expectation values of physical operators over a 
state vector, would produce either 0 or 1. Thus, the decomposi t ion of an arbitrary 
element of the ring into normal products, in which all B operators appear on the 
left of A operators, is physically significant. (This, of course, is also implicit  in the 
usual formulation of Wick's theorem in quantum field theory [4].) 

In some cases of physical interest, the rearrangements can be achieved 
algebraically. The procedure is based on the repetitive application of the commutat ion 
relation (1), or some of  its immediate implications like 

[A n, B] = nA n- 1, (3) 

[A, B n] = nB n- l ,  (4) 

or some more involved relations, e.g. 

[A, (BA)"] = n q=0 q (BA )qA, 

or, equivalently, 

(5) 

[A, (BA)n] = ( B A ) n - I A + ( B A ) n - 2 A ( B A ) + . . . + ( B A ) A ( B A )  n-2 (6) 

The associated reordering prescriptions take the form of  t ransformation 
expansions with integer-valued coefficients, subject to certain recurrence relations. 
The most  useful are the following: 

n 

(a) (AB)  n = ~ C(n ,q ) (BA)  q, (7) 
q=O 

which is a straightforward consequence of the commutat ion relation (1), i.e. of  
replacing AB with BA + 1, noting that powers of  BA commute,  and using Newton's  
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binomial theorem. Coefficients C(n, q), therefore, are recognized as binomial 
coefficients 

n 

and satisfy the recurrence relation 

C(n, q) = C(n - 1, q -  1) + C(n - 1, q), (9) 

which, in the context of  (7), follows from expressing its left-hand side as 
(BA + 1)(AB) n- 1, expanding the second factor and equating the coefficients with 
equal powers of (BA) q on both sides. 

?1 

(b) AnB n = ~ L(n,q)BqA q, (10) 
q=O 

where coefficients L(n, q) satisfy the recurrence relation 

L(n, q) = L ( n -  1, q -  1) + (n + q ) L ( n -  1, q), (11) 

with the stopping rule L(0, 0) = 1, and L(n, q) = 0 for n < 0, as well as for q < 0 or 
q > n .  

The coefficients can be expressed explicitly as 

n, (n  ) (12) L(n,q)  = ~ q 

and can be recognized as absolute values of  the coefficients of  Laguerre polynomials 
L,,(x) [5]: 

(c) (BA)" = ~ a(n ,q)Bqa q, (13) 
q=l 

which implies the recurrence relation 

a(n, q) = a ( n -  1, q -  l) + q a ( n -  1, q), (14) 

with a(1, 1)= 1 and o(n, q ) =  0 for n < 0 ,  as well as for q < 0  or q > n .  
The coefficients are the Stirling numbers of  the second kind [5], satisfying 

the relation 

a ( n +  1 , q +  1) = a(p ,q )  (15) 
p = q  P 

and having the explicit expression 
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(d) 

l q  () o ' ( n , q ) =  ~.  y__, (--1) q-k q k n (16) 
k=o k " 

gl 

BnA n = ~ S ( n , q ) ( B A )  q, (17) 
q=l 

where coefficients S(n, q) are defined for any positive integer n and for q = 1,2 . . . . .  n, 
so as to satisfy the following recurrence relation: 

S(n, q) = S(n - 1, q - 1) - (n - 1)S(n - 1, q). (18) 

Coefficients S(n, q) are known as the Stirling numbers of  the first kind, and 
are generated by the relation 

/I 

x ( x -  1 ) . . . ( x -  n +  1 )=  ~ S(n ,q )x  q (19) 
q=0 

and can be expressed explicitly in the form 

S ( n , q ) =  ~.~ ~.~ (-1)tk! )(n-q+kJ\n-q-k-l+k')( 2 n - q  ln_q_k (20) 

(e )  k = o  t=o  

n 

A nB n = ~ U (n, q) (Ba )q, (21 ) 
q=0 

with the recurrence relation 

N(n, q) = N ( n -  1, q -  1) + n N ( n -  1, q) (22) 

and N(0, 0) = 1. 
By making use of (3), we obtain 

AnB n = (BA + n)A n- 1Bn- 1 (23) 

and, consequently, 

A"B n = (BA + 1)(BA + 2 ) . . .  (BA + n). 

This implies 
rl 

(x + 1)(x + 2) . . . (x  + n)= Z U(n ,q)  xq. 
q=0 

(24) 

(25) 

By comparison with (19), we note 
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N(n,q)=(-1)"-qS(n+ 1, q +  1). (26) 

The normal-product expansion of  the nth power of B + A has the form 

(f~ (8+A) ~= ~ ~HCn,p) eqAP-q (27) 
p=O q=O q ' 

with coefficients H(n,p) defined for n, any positive integer or zero, and for 
q = 0, 1, 2, 3 . . . . .  n, so as to satisfy the following recurrence relation 

H ( n , q ) = H ( n - l , q - 1 ) + ( q +  1 ) H ( n - l , q + l )  (28) 

and the stopping rule H(0, 0 ) =  1. 
Coefficients H(n, q) are given explicitly as 

H ( n , n - ( 2 k +  1)) = O, 

H(n, n - 2k) = 
n! (29) 

2kk! (n-  2k)! 

and can be recognized as absolute values of  the coefficients of  Hermite polynomials, 
normalized to unit values of  the leading coefficient. 

Introducing the symbol [B + A] n to denote the would-be normal-product 
expansion of  (B + A) ~, if A and B were mutually commuting operators, namely 

n 

[B+A]n-- Z (~ )  BqAn-q, (30) 
q=O 

the expansion (27) assumes the form 

rl 

(B +A) n = ~ H(n,q)[B +AI q (31) 
q=O 

and can be considered a noncommutative algebra generalization of the usual binomial 
expansion. 

In connection with the generalized binomial expansion, it is interesting to 
note that the limit 

~ ( 8  +A). 
,,=o n! - 4~ eBeA' (32) 

which follows from (31), (29) and some combinatorics, agrees with the well-known 
formula 
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e A + B = eAeBe-1/2[a,B], (33) 

valid whenever the commutator of two operators commutes with each of them [6], 
and frequently used in quantum mechanics. 

The recurrence relations (11), (14), (18), (23) and (28) can be verified by 
total induction and the use of elementary combinatorics. The recurrence relations, 
however, are not unique and their form depends on algebraic manipulations applied 
to the considered operator product. For example, relation (11) for L ( n ,  q)  results 
from using (22) and then applying the identity 

( B A ) B n A  n : B " ( B A  + n ) A  n, (34) 

while, on the other hand, considering AnB n as A A  ~ -  ~B n -  ~B and using the identity 

ABnAnB = B ~ + 1An + 1 + (2n + 1)B"A ~ + n2B ~ - 1A"-  (35) 

leads to another recurrence relation for L(n, q) 

L ( n , q ) = L ( n - l , q - 1 ) + ( 2 q +  1 ) L ( n - l , q ) + ( q +  1 ) 2 L ( n - l , q +  1). (36) 

In making a comparison between the noncommuta t ive  ring algebraic 
manipulations and the generating function approach in combinatorics, one should 
note that algebraic treatment pertains to individual coefficients, while generating 
functions deal with corresponding polynomials. The polynomial recurrence relations 
generally relate polynomials and their derivatives, for different neighbouring index 
values, can in some cases be combined in such a way as to yield a differential 
equation and turn combinatorial investigation into an application of special functions 
theory. Alternatively, the noncommutative algebra can be used as a source for 
obtaining and analyzing combinatorial identities [7]. 

3. Linearly per turbed  harmonic  oscillator 

The generalized binomial expansion (27) had been utilized in a derivation of 
the transition probability of a linearly forced harmonic oscillator system [1], where 
the S-matrix exponential expansion assumed the form 

= ( i f ) .  
S =  y~ n! (B+A)" ,  (37) 

n = 0  

with B and A representing creation and annihilation operators, respectively, 
and f denoting a constant related to the time dependence of the displacement- 
proportional perturbation. 
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Application of (27) to the corresponding matrix element gives 

Sjk = n! ~" ~" H(n,p) (jlBqAP-qlk), (38) 
n=O p=O q=O 

and after some algebraic manipulation yields 

oo 2r (2r+p)!(k!j!) l /2(i f)2r+p 
s,, = 2o Z 

2 = 2q=0 
(39) 

with p = 2q + k - j .  The summation can be interchanged with due care to the limits, 
and the series in 2r can be summed to obtain exp(-f2/2).  

Thus, 

(k! j ! ) l l2( i f )  2q+k-) e x p ( _ f  2 /2 ) ,  
Sjk = ~ q ! ( q + k - j ) ! ( j - q ) !  

2q=0 
(40) 

or, equivalently, 

Sjk = L; -J ( f  2 ) f ~ -j (j!/k ! ) 1/2 exp(-f  2/2 ), (41) 

and, finally, 

J] f2 (k - j )  (L;  - J ( f2) )  2 exp(--f 2). e,k = g ,  (42) 

From the point of view of the noncommutative algebra and the proposed list- 
processing approach, this represents a very special case in which the interaction has 
a simple form and the corresponding operator-product manipulation can be dealt 
with algebraically. In more complicated cases, however, and especially in prospective 
applications to the many-body problems and to quantum field theory, the algebraic 
treatment will have to be replaced by computer-implemented symbolic processing. 

4. List-processing prescription and graph-related aspects 

In order to emulate algebraic manipulations via list-processing, we map a 
general element of the noncommutative ring to a set of corresponding lists, which 
possesses an equivalence relation collecting identical elements and providing appropriate 
coefficients. The term list, as used in the text, complies with the usual computer- 
science parlance denoting an ordered sequence of arbitrary length, where each 
element has its predecessor and its successor, while the ordinal position of an 
element within a list is inessential. The empty list ( ) is also included and corresponds 
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to the unit element 1 of the ring. (Note the distinction between an array and a list, 
the former possessing a fixed length and explicit values of the position index.) 

The transition to normal ordering requires the following list-processing steps: 

(a) for each element of the list, a suitable predicate should detect the presence 
of the ordered pair (A, B); 

(b) starting with the first detected pair, the element in the list should be replaced 
by two new elements, one differing from the original element by an exchange 
of the (A, B) for a pair (B, A), the other being obtained by deleting the (A, B); 

(c) the process should be repeated until there are no (A, B) pairs within the elements 
of the list; 

[d) if in the resulting new list some equal elements appear, they should be collected 
and the appropriate number placed into the corresponding integer-field. 

With respect to computer implementation, one can choose between an imperative 
or a descriptive programming language, the obvious favorites being LISP and PROLOG, 
respectively. It is important to note, additionally, that algebraic list-processing 
relies crucially on rccu~ive procedures [9] and, in particular, on recursive combinatorial 
algorithms [10]. 

To provide a feeling for the proposed approach, we explicitly present an 
elementary version of the normal-reordering part of the query database displayed 
in the Edinburgh dialect of micro-PROLOG: 

NORMAL-REORDERING : 

(collect (XI Y) (x I y)) 

(multiplicity X (X I Y) x) 

(remove-all X Y z) 

(collect z Z y) ) 

(collect (X) (X) (i)) ) 

(multiplicity X () 0) ) 

(multiplicity X (X I Y) Z) 

(multiplicity X Y x) 

(SUM x i Z)) 

(multiplicity X (YI Z) x) 

(NOT EQ X Y) 

(multiplicity X Z x) ) 

(normorder (X I Y) Z) 

(abba X x y) 
(/) 

(normorder (x) z) 

(normorder (y) Xl) 
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(( 
(( 

(normorder Y YI) 

(union z Xl Zl) 

(union Y1 Zl Z)) 

normorder X X) ) 

abba X Y Z) 

(union x (A B I Y) X) 

(sorted y) 

(union x (B A I y) Y) 

(union x y Z) 

( / ) )  

extended with rather obvious clauses needed for the predicates: "remove-all", 
"union" and "sorted". 

On the level of associated graphs, the described procedure co/responds to 
building a binary tree with a new node added at each subsequent replacement of 
AB by BA + 1 in the list. The root of the tree corresponds to the initial operator- 
product and the leaves of the tree to the elements of the transformed list generated 
by the removal of all ordered pairs (A, B) from the list. 

The presence of identical leaves in the tree, which initiates the collection 
procedure, is often brought about by some partial ordering implicit in the list- 
processing. This is reflected in the existence of recurrence relations which, when 
interpreted as rules connecting respective nodes with weighted edges, transform 
trees into network structures. 

The resulting graphs can be treated by trajectory counting procedures to 
provide an indel~ndent control mechanism. Conversely, suitable graph transformation 
methods may be used as a means of investigating combinatorial properties of the 
noncommutative algebra. 

To illustrate the possibilities, we include a few elementary examples: 

(a) A normal-ordering query performed on the (A A B B B A B A A) passes 
through a search sequence 

(AABBB(AB)AA), 

(a (AB)BBBBAAA a (AB)BBAA), 

((AB)ABBBAAA (AB)BBAAA (AB)ABBAA (AB)BAA), 

(BA(AB)BBAAA (AB)BBAAA B(AB)BAAA BBAAA BA(AB)BAA 

(AB)BAA B(AB)AA BAA),.~.~, etc., 

and after ten binary tree levels, completes reordering and yields the response 

( ( B A A ) ( B B A A A ) ( B B B A A A A ) ( B B B  B A A A A A  ) ) (61891) ,  
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i.e. 

AABBBABAA = BBBBAAAAA + 9 BBBAAAA + 18 BBAAA + 6 BAA. 

The search procedure, therefore, may be viewed as a sequential list manipulation 
in accordance with the previously stated list-processing steps. 

(b) Querying the list (.4 A B A B), we obtain 

( ( A ) ( B A A ) ( B B A A A ) ) ( 4 5 1 ) ,  

which, alternatively, may be envisaged as being brought about by collecting leaves 
on the corresponding binary tree (see fig. 1). 

(AB)B/~ (AB)~~I~~ BAA "IDA ~BAA "IDA 

Fig. 1. 

If, instead, the collection of equal nodes were introduced at each subsequent 
level of the calculation, the process could be represented as a graph (see fig. 2) in 
which the normal-ordered terms correspond to the terminal nodes (i.e. nodes with 
no exiting lines B B A A A, B A A, A) and the appropriate expansion coefficients can 
be obtained via trajectory counting. 
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AAI3AB 

~ A  

[3AA 

[3BAAA 

Fig. 2. 

(c) A request for normal-ordering of the list (B A B A B A B A ) yields 

((BA )(B B A A  ) ( B B  B A A A  ) ( B B B  B A A A A  )) (17 61), 

which complies with (13), the coefficients being the Stirling numbers of the second 
kind ~r(4, 1), or(4, 2), or(4, 3), cr(4, 4). 

It is interesting to make a detailed examination of the corresponding binary 
tree produced by the sequential reapplication of (1), and note that introduction of 
(4), as a rule in the list-processing, contracts the structure into a weighted Hasse 
graph (see fig. 3) from which the requested normal ordering can be directly read 
by trajectory counting. 

ABAB(AB)A 
BAB(AB~ .~I~ABBB)AAA 

B ~ )  AAA 

BA BBAA B B B A A A  BBBBAAAA 

Fig. 3. 

In view of (13), the nodes of the Hasse graph appear as values of the Stirling 
numbers or(n, q). Note that a general node (n, q) receives inputs from two preceding 
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nodes: from ( n -  1, q -  1) with weight 1, and from ( n -  1, q) with weight q, thus 
implying the recurrence rclation (14), now obtained via graph enumeration. 

(d) Queries on liszs with all A-operators preceding B-operators, e.g. (A A B B B B B ), 
provide the insight into a graph interpretation of the commutator [A m, Bn]. Namely, expanding 
the terms in accordance with the commutation relation (4), taken as the database rule 
instead of (1), we obtain 

(A ( A B B B B B ) ) ,  

( ( ( A B B B B B ) A ) , 5  ( A B B B B ) ) ,  

( ( B B B B B A A  ), I O ( B B B B A  ) , 2 0 ( B B B  )), 

yielding a graph (see fig. 4) from which the corresponding trajectory counting 
complies with the query result 

( A A B B B B B )  ---) ( ( B B B ) ( B B B B A ) ( B B B B B A A ) ) ( 2 0 1 0 1 ) .  

BBB " 9 "W'aBaSA "Oa B 
Fig. 4. 

Similarly expanding (A A A A A B B ), by repeated application of (4), we obtain 

( A A A A ( A B B ) ) ,  

((A A A(A B B)A ) 2 (A A A(A B))), 

((A A(A B B)A A) 4 (A A(A B)A) 2 (A A A )), 

((A(A B B)A A A) 6 (A(A B)A A) 6 (A Am)), 

(((A B B)A A A A) 8 ((A B)A A A) l0 (A A A)), 

((BBAAAA) 10(BAAAA) 20(AAA)), 

correcponding to to the graph of fig. 5, corroborating the query response 

( A A A A A B B ) ( ( A A A ) ( B A A A A ) ( B B A A A A A ) ) ( 2 0  10 1). 
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AAAAABB 

AAA 

Fig. 5. 

One can proceed to the general case of AraB ~ and infer that the corresponding 
m-leveled weighted digraph would be as given in fig. 6. 

0 

1 

2 

3 

4 
-3 

,,,¢ 
Fig. 6. 

Making the observation that for this graph all trajectories which lead to any 
chosen node carry equal contributions, and taking notice of the fact that the number 
of trajectories on a Pascal-triangle graph equals the number of corresponding 
combination, we obtain the general commutation expression: 

m. 

[Am,Bn]= ~ _ ~ q ! ( m ) ( n ) B n - q A " - q ,  
q=l q q 

(44) 

which is a useful algebraic result. 
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Comment 

More sophisticated future versions of our logic-programming database should 
use (44) as a basic rule instead of its very special case (1), and thus considerably 
gain in efficiency when very large lists are normal-order manipulated. This may 
prove crucial in contemplating real-world quantum mechanical applications. 
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